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An Assessment of the Use of Chimpanzees in Hepatitis C

Research Past, Present and Future: 1. Validity of the
Chimpanzee Model

Jarrod Bailey

New England Anti-Vivisection Society, Boston, MA, USA

Summary — The USA is the only significant user of chimpanzees in biomedical research in the world, since
many countries have banned or limited the practice due to substantial ethical, economic and scientific
concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and con-
tinuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the
scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the
necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable,
respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It
has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis
C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the
array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C
research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment.
Unfounded claims of its necessity should not discourage changes in public policy regarding the use of

chimpanzees in US laboratories.
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Introduction

The use of chimpanzees in biomedical research
remains at the centre of debate, both within the
scientific community and among the general pub-
lic. The suffering experienced by the chimpanzees
involved (1-5), combined with growing evidence of
the lack of human relevance of the data produced
(6-10), provide compelling ethical and scientific
arguments that have contributed to worldwide leg-
islative decisions to ban, or at least significantly
restrict, experimentation on chimpanzees and
other great apes (1). These concerns are reflected
in the United States, both in public opinion (11),
and in legislative actions, such as the CHIMP
(Chimpanzee Health Improvement, Maintenance
and Protection) Act in 2000, the Burr Amendment
of 2007 (12), and the 2009 reintroduction of the
Great Ape Protection Act (GAPA; 13) — legislation
that seeks to prohibit the conducting of invasive
research on all great apes.

In spite of the above considerations, invasive
experimentation on chimpanzees continues to be
performed in the USA. As the only significant user
of these animals in such research, approximately
1,000 individuals were held in US laboratories as
of late 2009 (14). It has been claimed, by some
advocates of their use, that chimpanzees are a cru-
cial tool in the fight against serious human dis-

eases such as AIDS, cancer and hepatitis (15), con-
stituting a scientific necessity that ‘trumps’ ethical
and practical concerns. While robust scientific evi-
dence has been published to rebut these claims
with respect to AIDS (6) and cancer (16), as well as
the general utility of chimpanzee research with
regard to human medical benefit (7, 8), little atten-
tion has been devoted specifically to the question of
chimpanzee research into hepatitis C.

Science and medicine are naturally compelled to
address hepatitis C, a disease that currently
affects up to 200 million people and leads to bil-
lions of dollars in healthcare costs. Annually, there
are around four million new infections and tens of
thousands of deaths, as the disease often pro-
gresses to liver cancer, treatable only in approxi-
mately half of the cases. There is currently no
vaccine available against the disease. As a result,
hepatitis C research has been an area of intense
investigation for many years. In common with
other viral infections, a huge effort has been made
to further understand the virus, the immune
responses to it, the ensuing disease and pathology,
and the roles of host and viral factors therein.
Extensive work has also been undertaken toward
the development of vaccines and antiviral thera-
pies. This effort has comprised clinical, epidemio-
logical, in vivo, ex vivo, in vitro and in silico
approaches, but has also extensively utilised chim-
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panzees as the only organism other than humans
that can be reliably infected with hepatitis C virus
(HCV). What remains unclear, however, is the role
that chimpanzees could, or should, play in the dis-
covery and development of these urgently needed
therapies and vaccines. This can only be estab-
lished by a thorough evaluation of the research
requirements that only chimpanzee use can meet,
and which cannot be met by any alternative
approaches.

This report aims to elucidate and critically eval-
uate the current and future ‘need’ for chimpanzee
experimentation in this field. An indication of the
prior value of chimpanzee data must be obtained,
by evaluating their contributions to tangible
progress and assessing to what degree the data
produced are predictive of, and relevant to, human
hepatitis C infection. Further, a full appraisal of
the scientific methodologies currently available to
HCV research must be conducted, to identify pre-
cisely which questions can be answered, what data
can be obtained, and where any gaps in knowledge
might exist (this is addressed in detail in the com-
panion article, which will appear in the next issue
of ATLA [17]).

While retrospective analyses can indicate the
value, predictive nature and human relevance of
the chimpanzee model, such conclusions may or
may not be pertinent to that model’s value in
future research, as new clinical and in vitro
research methods may have superseded it. If non-
chimpanzee approaches are able to provide all the
necessary information to enable the development
and testing of HCV therapies, then there is no
need to use chimpanzees. If there is no current sci-
entific requirement for chimpanzees, their value as
a model is academic, and their use can no longer be
justified. Importantly, a negative outcome for the
chimpanzee model (e.g. revealing it not to be
robust and predictive for humans) would invali-
date it, and would preclude its further use in any
case. However, if there might be data that only
chimpanzees can provide, there must be a critical
and ethical appraisal of such necessity with regard
to the aim of realising HCV therapies. Would the
perceived benefit of additional and specific data,
only available through chimpanzees, positively
impact HCV research as a whole to a significant
enough degree to warrant the ethical and financial
cost of those experiments? For these reasons, a ret-
rospective analysis of the validity of chimpanzee
use in hepatitis C research is a crucial part of this
process.

Hepatitis C: The Virus, Disease and
Treatment

A human hepatitis-like illness that did not con-
form to type-A or type-B hepatitis diagnoses was

identified in the 1960s, based on studies of humans
who had received blood transfusions (18).
However, the causative agent of “non-A, non-B
hepatitis” (NANBH; 19) was not identified until
1989 (20), when tests on human serum samples
from blood donors and recipients finally confirmed
that the agent was HCV (21, 22).

HCYV infection now poses a serious and growing
problem worldwide, with significant human and
financial impacts. Approximately 170-180 million
people are infected, representing some 3% of the
world’s population, and the number of infected peo-
ple is growing at a rate of three to four million per
year (23—25). In the USA alone, it is estimated that
four million people are infected, with up to 10,000
deaths and 40,000 new infections per year, while
in Europe, five million are HCV-positive (24). HCV
infection is the leading cause of liver transplanta-
tion in developed countries (26, 27), with an enor-
mous burden in direct healthcare costs that
exceeded one billion US dollars more than a decade
ago (24). Projections indicate that HCV-related
chronic liver disease will affect four times as many
people in 2015 than it did in 1990 (24).

The virus chiefly infects hepatocytes, though
peripheral blood mononuclear cells are also
infected (28-30). Acute infection is very often
asymptomatic (31), and a significant number of
infected individuals eliminate the virus without
treatment. Estimates of the proportion of infected
individuals who spontaneously resolve their infec-
tions, vary from 15% to 50%, though an average of
25-30% seems to be a reasonable consensus (32,
33).

Chronic infection, however, often leads to liver
fibrosis, cirrhosis, and even hepatocellular carci-
noma (HCC; 34). While approximately 75% of
infections become chronic, almost all of these —
and 60-70% of all HCV infections — progress to
liver disease. Between 5% and 20% of infected peo-
ple (and around one-third of those chronically
infected) eventually develop liver cirrhosis, and
many individuals go on to develop HCC (35). More
than half of all HCC cases, and two-thirds of all
liver transplants, are directly due to HCV infection
(36). HCC is one of the most prevalent and deadly
cancers in the world (37), and up to 5% of HCV-
infected people will eventually die from this form
of cancer (33).

In spite of intense research since the discovery of
HCV in 1989 (20), an effective prophylactic human
vaccine remains elusive. The difficulty in develop-
ing successful HCV vaccines and antiviral thera-
pies i1s largely due to the significant genetic
heterogeneity of the virus, which is a consequence
of the high activity of the error-prone and non-
proofreading viral polymerase. This leads to the
presence of viral quasispecies in infected people,
confounding the generation of effective neutralis-
ing antibodies and other immune responses, thus
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instigating immune escape and the tendency for
infection to become chronic (38).

Therapeutic options currently amount to just
one approved intervention, which entails treat-
ment for 12-72 weeks with a combination of non-
specific antivirals in the form of pegylated
interferon-alpha (PEG-IFN-o) and ribavirin
(39-41). While the mechanism of action of this
treatment is not well understood, IFN-mediated
host-directed immune modulation and antiviral
effects, augmented by ribavirin (42), typically
induce a sustained viral response (SVR) in
between 40% and 60% of patients (43—47), which
results in HCV being undetectable six months
after the end of treatment (45, 46, 48). The benefits
of this treatment, for those who respond to it, are
considerable: the virus is eliminated from the
patient’s liver and blood cells and remains unde-
tectable, in almost all instances, for many years
(48, 49); it ameliorates fibrosis and cirrhosis; and it
helps prevent progression to HCC (24, 50).
However, there are many caveats. The response to
treatment is highly genotype-specific (51), ranging
from 60-90% for HCV genotypes 2 and 3, but it can
be as low as 30-70% for genotype 1, the type of
HCV most prevalent in the USA (33, 52). On aver-
age, this means that almost half of infected indi-
viduals fail to respond to therapy — and this
proportion is increasing (24, 42). Further, treat-
ment is poorly tolerated and causes significant
adverse reactions, including anaemia, depression,
fever and fatigue, with the result that many
patients discontinue the medication (41, 42,
53-56). A standard course of treatment costs over
$20,000 (57), which prevents many people from
being treated (58). It is clear that superior thera-
pies and a vaccine are imperative for the effective
management of hepatitis C.

How Chimpanzees are Used

Chimpanzees have been used in hepatitis C/NANB
research for three decades (Figure 1). Despite an
initial steep rise in their use from 1979 through to
the mid-1980s, the trend since then has been
downwards, with the current relative research
interest (2009) approaching one-third of its peak
value in 1985 and a historical low. This consider-
able reduction in chimpanzee use is encouraging,
ethically, as it indicates a lack of need for chim-
panzees — arguably because of lack of utility
and/or diminishing scientific need due to replace-
ment technologies. Figure 2 illustrates this point
further, outlining the contrasting rise in hepatitis
C research, over the same period, which does not
involve the use of chimpanzees or any other non-
human species (see companion article [17]). No
matter how low the numbers of chimpanzees cur-
rently used in HCV research, the consequences for

those individuals in active protocols are severe and
pose grave ethical concerns.

It is estimated that approximately 500 chim-
panzees have been used in HCV-related investiga-
tions from 1998 to 2007 (59). These chimpanzees
were subjected to invasive and stressful proce-
dures (59), including frequent blood sampling,
repeated liver biopsies, intravenous or intrahep-
atic inoculation of HCV, and injections/infusions of
potential vaccines. The details of the procedures
performed on chimpanzees are almost invariably
scant. No elaboration of blood sampling procedures
is given — these can be weekly or, in the case of
programmes of six months or longer, bi-weekly or
monthly (e.g. 60—-62). Blood draws can be achieved
by training the chimpanzees to present their arms
for phlebotomy, or can require a ‘knockdown’ in
which chimpanzees are immobilised by being shot
with dart guns loaded with anaesthetic (63).
Knockdowns are common, and are required for the
other procedures mentioned above, though they
are not explicitly cited in the literature. Given
their traumatic nature, it is important to note the
degree of knockdowns. It is not uncommon for
chimpanzees to be surrounded by laboratory staff
during the procedure, which induces severe stress.
Fear of the gun causes chimpanzees to attempt to
avoid it, resulting in wayward darts hitting sensi-
tive areas, such as the eyes and genitals, or even
puncturing their lungs (64). Generally, little expla-
nation i1s provided regarding the frequency and
general procedure for biopsies and inoculations.
Liver biopsies, initially, may be performed up to
three times per week, with a chimpanzee typically
undergoing dozens of these procedures in any par-
ticular investigation (e.g. 65-69). Such biopsies
may be done percutaneously by using a needle, or
as part of open surgery to obtain more substantial
wedge biopsies (70). Either way, postoperative
pain is common and severe (71). Procedures for
inoculation with HCV and/or testing potential vac-
cines are also invasive: infection can take up to ten
challenges (72, 73), and may involve intrahepatic
inoculation (74) entailing open surgery (75); test-
ing of vaccines involves multiple procedures, with
up to 11 immunisations being administered over a
48-week period (e.g. 76—78). Altogether, it has been
estimated that a chimpanzee may be subjected to
around 30 knockdowns in any one investigation,
and that each knockdown can require the use of up
to five darts (64). Because chimpanzees are used
repeatedly in different research programmes, some
individuals have been subjected to more than 300
knockdowns and over 130 liver biopsies (64).

Validity of the Chimpanzee Model

Against this ethically problematic background, the
scientific worth of chimpanzee experiments in
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HCYV research must be measured. It is not possible
to assess their scientific value, past or present,
based solely on statements and opinions in the lit-
erature. For example, it is often claimed that chim-
panzee data have contributed significantly and
crucially to our knowledge of the virus and of the
disease. According to some reports, this animal
model was required for demonstrating that a
transmissible, filterable agent with a lipid-contain-
ing envelope was the cause of NANBH (79-83). In
the actual discovery of HCV, these animals were
said to have provided a means to amplify the
causative agent of NANBH in order to acquire suf-
ficient amounts of virus for cloning and identifica-
tion (20, 52, 83). It was also claimed that
chimpanzees were essential in the development of
HCYV infectious clones (84—-87), and in demonstrat-
ing that HCV infection does not elicit protective
immunity (88-90).

The chimpanzee “has been considered the pri-
mary choice for studying the relationship between
the virus and host anti-viral immune responses, as
well as for evaluating immunopathogenesis and
the efficacy of prophylactic vaccination” (91), and
as “a useful model for HCV infections” by virtue of
the genetic similarity of humans and chimpanzees
(90). Through the past decade, it has been claimed
that chimpanzees are:

— the only way that vaccine immunogenicity and
efficacy can be tested (86);

— the only means of analysing the early events of
HCV infection due to its asymptomatic nature
in humans, and of determining whether anti-
bodies raised against HCV have neutralising
activity (90);

— the only means of monitoring the entire course
of infection because of ethical issues surround-
ing the frequent sampling of liver tissue in
infected humans (86); and

— the only approach to studying infections with
specific and well-characterised inocula (87).

Speculative claims of future crucial involvement in
HCV research are also frequent. It is alleged, for
example, that chimpanzees will be important in
the definition of correlates of protection, to deter-
mine the duration and extent of cross-genotype
vaccine protection, to understand mechanisms of
chronicity, and to derive optimal vaccine formula-
tions (52).

It is widely implied that the chimpanzee model
has been extensively used, simply because the
chimpanzee is the only species, other than man,
which can be infected with HCV (e.g. 32, 52, 92,
93). This suggests that the researchers’ hands
were forced to some degree, as no other in vivo

model was available, and is borne out by a consid-
eration of the acknowledged significant differences
between the course of HCV infection and pathology
in humans and chimpanzees. It is widely appreci-
ated that “experimental infection in primates is in
many respects poorly representative of human
infection” (92), and that “the chimpanzee model of
HCV infection may not recapitulate all aspects of
the virus—host interaction of the infection in
humans” (94). Though species-specific estimates
vary (90), in general, there is a much lower rate of
chronic infection in chimpanzees, due to greater
viral clearance (95-97). Persistent infection has
been estimated at approximately 85% for humans,
but it might be as low as 30-40% for chimpanzees
(87). Immunologically, it has been demonstrated
that the production of antibodies to the HCV enve-
lope proteins is much less robust in chimpanzees,
possibly due to reduced viral replication during
acute infection (97, 98), and it seems that HCV
envelope proteins mutate to a lesser degree in
infected chimpanzees compared with humans (99).
Chimpanzees infected with HCV do not progress to
having liver fibrosis and cirrhosis in the way that
humans do, and have much milder symptoms (90).
Furthermore, HCV-induced hepatocellular carci-
noma is very rare in chimpanzees (87), and, unlike
in humans, there i1s a lack of mother-to-infant
transmission of HCV (100).

In light of these differences and the other seri-
ous issues outlined above, all claims of the indis-
pensability of the use of chimpanzees in HCV
research must be critically examined. It is of no
consequence with regard to the wvalidity and
necessity of chimpanzee HCV research, if the
involvement of chimpanzees in a particular line of
investigation was of secondary importance. Any
involvement must be shown to be absolutely cru-
cial. The data must be relevant to, and predictive
of, human biology; there must be no alternative
way in which these data could have been
obtained; and the data must have led to tangible
medical progress. If the results from chimpanzee
experiments fail to meet any of these criteria,
then it must be concluded that their use was
unnecessary and unethical.

HCV Research: Contributions of
Chimpanzee, Clinical and In Vitro
Methods

Early observations of NANBH and the
discovery of HCV

Human-based research features heavily in
accounts of the discovery of hepatitis C (e.g. 83,
101), and of the discovery and early characterisa-
tion of its causative agent. The acknowledged
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human-based contributions include: demonstrat-
ing that NANBH was the salient complication of
transfusion therapy; defining NANBH’s natural
history; identifying surrogate markers of the dis-
ease, such as alanine aminotransferase; and lower-
ing the incidence of transfusion-associated
NANBH, even prior to the identification of the
virus itself (102).

However, such clinical research appears along-
side assertions of the vital nature of contemporary
chimpanzee involvement, of which an examination
1s presented here. NANBH was first described in
1975, when newly developed serological tests
based on clinical research demonstrated that most
cases of transfusion-associated hepatitis were not
caused by the hepatitis A or B viruses (HAV and
HBV; 19, 103, 104). Human studies also suggested
that a new infectious agent was responsible for the
disease that led to liver damage and even cirrhosis
(105), and was not only manifest following approx-
imately 10% of blood transfusions, but also sponta-
neously in the population (106-108). Around half
of NANBH patients went on to suffer from chronic
disease (109), and some developed hepatocellular
carcinoma (110).

The results from chimpanzee studies definitively
demonstrated the transmissibility of NANBH (79,
80). However, this had been previously suggested
by the aforementioned human studies. Further,
one of the serum samples from a NANBH patient,
which was used to ‘infect’ a chimpanzee in these
studies, was already known to have transmitted
the disease to a nurse following an accidental
needle-stick injury. Two other sera which were
used originated from blood donors whose blood had
been implicated in cases of post-transfusion hepa-
titis in human recipients (80). As the authors of the
chimpanzee study noted, “We have shown that
non-A, non-B hepatitis is transmissible to young
chimpanzees by sera from human beings whose
blood had transmitted the disease to other human
beings” (80). They also reported that a number of
previous attempts to transmit NANBH from
humans to chimpanzees had failed.

Attempts to isolate and identify the NANBH
virus then floundered for more than a decade — in
large part because potent molecular biological
methods, such as the polymerase chain reaction
(PCR; 111), were not available. The major break-
throughs were made in the mid-to-late 1980s, fol-
lowing the painstaking screening of cDNA
expression libraries derived from NANBH virus-
infected chimpanzee liver samples (101). The pro-
tocol involved the speculative ‘fishing’ of
NANB-genome specific clones out of these libraries
by using sera from infected humans and chim-
panzees as ‘bait’ — the hypothesis being that anti-
bodies in these sera, specific to the NANB
infectious agent (generated by the host immune
system in response to the infection), would bind to

the NANB polypeptides present in the expression
library, thus identifying immuno-positive polypep-
tides for selection and further characterisation.
Many millions of clones were screened, initially,
with no success. Finally, a positive NANBH clone
was isolated via a screening process that utilised a
cDNA library from a single chimpanzee with a
markedly high plasma titre of the NANBH infec-
tious agent, which was screened with serum from
a human chronic NANBH patient with very high
serum alanine aminotransferase levels (indicating
severe liver damage; 20).

Subsequent comparative experiments, involving
the use of sera from infected and uninfected
humans, verified the NANBH-specificity of this
clone, and revealed the viral genome to be RNA,
not DNA, which facilitated the identification of
other viral clones (101). Further work with human
sera led to the development of an immunoassay
that served as a blood-screening test for what was
now known as hepatitis C virus (22, 112), which
prevented many HCV infections and, ultimately,
HCV-related deaths via the transfusion of contam-
inated blood.

Therefore, it is evident that the crucial steps in
the early characterisation of the disease and the
infectious agent were based on human investiga-
tions, and that chimpanzee involvement was not
integral or essential. Given the lack, at that time,
of many of the molecular techniques that now
exist, when attempts were made to positively iden-
tify HCV, chimpanzees were undoubtedly useful in
the generation of serum samples with high titres of
the infectious agent, the use of which greatly
increased the chances of success in discovering
HCV-specific clones during the laborious screening
process. More virions provided a greater propor-
tion of HCV-specific clones, which in turn facili-
tated their isolation. Yet, in retrospect, it is
perhaps likely that the use of uncharacterised (i.e.
low/‘'standard’ titre samples) in contrast to these
high-titre sera would not have precluded, or even
compromised, the identification of HCV-specific
clones. Though the infectivity of human HCV sera
1s low in chimpanzees, which suggests low titres of
virus and reduced levels of HCV genomic material
for cloning, it is now known that the poor infectiv-
ity of such sera is on account of the genomic RNA
being immune complexed (113, 114). Unchar-
acterised human sera would probably have been
equally useful for cDNA library construction, and
to the eventual identification of HCV clones and
the virus itself.

Infectious molecular clones of HCV
The development of infectious molecular clones of

HCV 1is one of the more salient examples put for-
ward by advocates of the importance of chim-
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panzee research. For example, it is claimed that
the chimpanzee provided the only means of assess-
ing the infectivity of HCV clones, and that subse-
quent experiments with these infectious clones led
to several valuable insights into the natural his-
tory of HCV infection and host immune responses
(86).

HCV clones are produced by reverse-transcrip-
tase PCR (RT-PCR) of HCV genomic RNA present
in infectious serum samples. The resultant cDNA
clones can then be inserted into expression vectors,
which, when specifically linearised by a restriction
endonuclease, allow the generation of run-off tran-
scripts producing RNA molecules with precise 3’
termini, representing HCV genomic RNAs (115).
Because these RNA molecules are positive (i.e.
genomic) sense, they can be used in vitro or in vivo
directly, as mRNA templates for the translation of
the HCV viral proteins, thus initiating the viral
life cycle (116).

Initially, the reality was not as straightforward
as the theory. In some of the first reports of suc-
cessful infectious clones in chimpanzees, investiga-
tors referred to previous experiments in which
dozens of pre-screened clones (in terms of restric-
tion analysis, polyprotein processing and viral-
polymerase production) failed to demonstrate
infectivity when intrahepatically injected into
chimpanzees (84, 85). This was thought to be due
to the absence from the clones of important
nucleotides from the 3 -untranslated region (3’-
UTR) of the HCV genome, as well as mutations
incorporated into the clones due to errors during
the RT-PCR process (84, 85). To remedy this, les-
sons were learned from similar attempts at infec-
tious clone production with other related viruses
(e.g. 117), in which consensus sequences of the spe-
cific viral isolates being used were determined.
This overcame problems caused by inherent error-
prone replication of the viral genome during
cloning and as part of the viral life cycle, which
introduces mutations into progeny genomes,
thereby rendering them defective (118-120). These
introduced mutations are not prevalent in the viral
population, and are therefore identifiable in rela-
tion to the consensus sequence of that population.
By aligning clones of an HCV genotype 1a isolate
H77, obtained from the serum of an infected
patient with a high viral titre, and then establish-
ing a consensus sequence, HCV clones were finally
produced that were shown to be infectious when
inoculated into the livers of chimpanzees (84, 85).

It is claimed that the investigators in these first
successful studies tested the infectivity of their
clones via the inoculation of chimpanzees, as
opposed to the infection of cell lines, “because it
was unclear whether such a genome would repli-
cate in cell culture” (118), and due to the “lack of
reliable in vitro propagation systems of HCV” (85).
This assertion has subsequently been compounded

by affirmations that the very development of these
clones was dependent on chimpanzees (86, 87). It
can be argued that only the first of these three
statements 1s valid, and that the last statement is
false. It was certainly unclear whether any cloned
genome would replicate in cell culture. Yet, given
the considerations above, it must be concluded that
this uncertainty was no greater than the uncer-
tainty that any clone would replicate in chim-
panzees. Both approaches had encountered
numerous failures up to this point. It is also likely
that in vitro approaches were being overly criti-
cised. A recent review cites several successful cell
culture approaches, contemporaneous with the
first reports of successful chimpanzee inoculation
(121). For example, a persistently HCV-infected
Huh7 human hepatoma cell line had been created
by transfection with putative full-length HCV-1
transcripts, which demonstrated HCV replication
and the production of biologically-active progeny
virus (122). In addition, a HepG2 human hepatoma
cell line transfected with near-full-length HCV
RNA formed the basis of a stable and reproducible
system exhibiting robust HCV replication and the
production of infectious viral progeny (123). The
investigators opined that these systems were valid
for the study of key aspects of the HCV life cycle,
such as viral replication, persistence and patho-
genicity, and to test anti-viral agents.

A study of the literature offers several explana-
tions as to why in vitro approaches like these
might have been prematurely and incorrectly dis-
counted in favour of in vivo methods. The ability
of cell lines to provide a means of assessing infec-
tivity of clones, and of investigating the viral life
cycle, could have been generally underestimated.
In common with early in vivo attempts, the viral
clones were missing important sequences from
the 3°-UTRs (124-126) and, prior to the use of
consensus clones, they were carrying many dele-
terious mutations (84, 85, 118). But, perhaps
more importantly, it has been claimed that in
vitro methods posed too many practical problems
regarding the measurement of HCV replication,
due to difficulties in differentiating between the
high input-level of template RNA required to effi-
ciently transfect the cells, and the sparse
amounts of product RNA because of the low effi-
ciency of in vitro HCV replication (127). In fact,
not only did in vitro systems exist with
respectable levels of HCV replication (such as
those cited previously), but also a number of sen-
sitive, reliable and routine methods were avail-
able to specifically detect and quantify HCV
replicative activity. To illustrate this point, HCV
replication can be detected and measured via:

— RT-PCR and/or ribonuclease protection assay of
negative strand RNA intermediates, which are
only produced during viral replication;
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— the incorporation of radioactive nucleosides,
such as 3H-uridine, into de novo RNA mole-
cules;

— the in situ RT-PCR of HCV RNA present in
long-term-cultured cells;

— the infection of freshly cultured, non-infected
cells with culture media from transfected cell
lines, indicating the production of infectious
HCV;

— the immunostaining of viral proteins; and

— the visualisation of the virus, or virus-like par-
ticles, via electron microscopy (122, 123).

Further, recent examinations of 14 HCV clones
and their in vitro and in vivo properties (118, 127)
list parallel references for the in vitro and in vivo
studies of each HCV clone. Of the 14 clones, six are
referenced in chimpanzee studies prior to cell cul-
ture experiments (as might be expected in light of
the assumed importance of the chimpanzees and
the assumed unsuitability of cell cultures). Yet,
four clones are referenced in in vitro studies prior
to the cognate chimpanzee citation. The remaining
four clones were either referenced in one system,
but not in the other, or the in vitro and in vivo
approaches were reported concurrently. In addi-
tion, an extract from one of the first papers report-
ing a successful infectious clone in chimpanzees
may be instructive with regard to the choice of
chimpanzees over cell cultures for the study of
infectious clones. Reasons of practicality, given
that a chimpanzee protocol was already in use,
seem clear: “We previously established an in vivo
transfection system for RNA transcripts of infec-
tious clones of hepatitis A virus in tamarins, as well
as in chimpanzees. Therefore, the infectivity of RNA
transcripts of full-length HCV clones was tested by
injecting transcription mixtures into the liver of
chimpanzees” (85).

It can be argued that it was not scientifically jus-
tifiable or necessary to use chimpanzees to test the
infectivity of HCV molecular clones. Nevertheless,
chimpanzees continued to be used to investigate
the infectivity and characteristics of a number of
subsequent HCV clones (128, 129), including con-
sensus clones of other genotypes such as 1b (strain
J4; 62) and 2a (strain J6; 73). These clones were
used in reverse genetic analyses of the HCV
genome, to establish the functions of its various
regions and encoded enzymes, yielding valuable
data (75, 130). Crucially, however, similar experi-
ments and findings have been obtained in vitro.
For instance, the regulated and non-regulated
expression of HCV clones (subgenomic and full-
length) in various cell lines (121) has allowed the
examination of: subcellular localisation of HCV

proteins and assembly of virus-like particles
(131-134); functions of wild-type and mutant HCV
proteins, such as the NS5b polymerase (131); the
effects of HCV proteins on host-cell growth and
gene expression (135, 136); the functional roles of
HCV UTR stem-loops (137); the antiviral effects
and modes of action of IFN and ribavirin (138,
139); the role of CD26 in HCV infection (140); the
effect of HCV proteins on IFN-induced intracellu-
lar signalling (141); the determinants of mem-
brane association of the viral polymerase (142);
and various properties and characteristics of the
HCV NS3-NS4A complex (143).

It is fortunate that in vitro methods were deliv-
ering comprehensive and useful data and showing
great promise for future utility. An alternative to
the chimpanzee model has always been asserted as
an imperative, due to widely-recognised caveats,
including “limitations in the variable course of
HCYV infection in chimpanzees” (121), their “endan-
gered status” (121), and the “expense associated
with their use” (87). It was auspicious that in vitro
approaches to HCV research were continuing to
evolve with the revolutionary development of
subgenomic and consequently full-length repli-
cons.

Acute versus chronic hepatitis: Factors
determining viral clearance and progression

A significant amount of chimpanzee HCV research
has focused on analysing the early events following
infection, as it is likely that these events critically
influence the outcome with regard to viral clear-
ance or persistence (65). It is claimed that the con-
trolled infection of chimpanzees provides the only
means of investigating the early events in HCV
infection, since natural infection in the human
population is only symptomatic (and therefore
detectable and amenable to research) when infec-
tion becomes chronic (87, 90). Further, it is sug-
gested that, because chimpanzees clear the virus
at a greater rate than infected humans do, the for-
mer represent an ‘attractive’ model to investigate
clearance, since the same factors may lead to clear-
ance in humans (65). While chimpanzees have
been used to obtain relevant data, such as demon-
strating that animals who resolved acute HCV
infection had stronger cytotoxic T-lymphocyte
(CTL) responses than those which went on to
develop chronic hepatitis (144), equivalent and
extremely informative data have emerged from
prior and contemporary human studies of the roles
of cellular and humoral immunity during acute
HCYV infection and viral clearance. For instance,
the critical role of cellular immunity was indicated
by observations that HCV-negative humans, espe-
cially those who had had prior virus exposure,
exhibited cellular immune responses to it
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(145-147). In addition, examinations of people
exposed to HCV-contaminated blood products
revealed the persistence of cellular immune
responses decades after recovery, with a concomi-
tant disappearance of anti-HCV antibodies (148),
and drew attention to the importance of particular
human leukocyte antigen (HLA) alleles in viral
clearance (149). Clinical observations indicated
that CD8" CTLs, known to recognise both con-
served and variable regions of HCV proteins in the
context of several different HLA molecules, had
been detected in the peripheral blood and liver in
humans (150, 151). Human studies had also indi-
cated vigorous T-cell responses in acutely infected
patients, in whom viral clearance was associated
with a strong CD4* helper T-cell response
(152-154).

The accidental exposure of healthcare workers
by needle-stick injury, provides a powerful means
of studying virological and immunological events
following from a human perspective, during the
incubation phase of acute HCV infection. One such
study led to the following information: “the vigour
and quality of the antiviral T-cell response deter-
mines the outcome of acute HCV infection; that the
ability of HCV to outpace the T-cell response may
contribute to its tendency to persist; that the onset
of hepatitis coincides with the onset of the CD8* T-
cell response; that disease pathogenesis and viral
clearance are mediated by different CD8* T-cell
populations that control HCV by both cytolytic and
noncytolytic mechanisms; and that there are dif-
ferent pathways to viral persistence in asympto-
matic and symptomatic acute HCV infection”
(155). Further, the comparative study of chronic
and long-term recovered HCV patients revealed
that HCV-specific CD8* cells in chronically-
infected patients had impaired proliferative and
effector functions, which possibly contributed to
viral persistence (156). Chimpanzees have also
been extensively used in attempts to elucidate the
characteristics of protective immunity to HCV
reinfection, following a prior and resolved infection
(157, 158). The results have been conflicting: some
chimpanzees were not protected against challenge
with a quasispecies, even of the same viral strain
(88, 89), while others exhibited rapid viral clear-
ance after rechallenge with both homologous and
heterologous HCV (159), a protection that was
even extended to HCV of other genotypes (160).
Most chimpanzee studies similarly indicate that,
following a prior infection, rapid control of HCV
rechallenge occurs. A more recent investigation
suggested that this was limited to homologous
virus genotypes — heterologous HCV challenge
resulted in viral persistence (60). Notably, the
mediation of viral clearance via cellular immunity,
alluded to earlier, does not appear to be aug-
mented by humoral immunity. In chimpanzees
that resolved infection or resisted reinfection, neu-

tralising antibodies were not present at significant
levels (157). However, this finding was not ground-
breaking, as this had been previously demon-
strated in a clinical study on humans with acute
HCYV infection (161). Similarities between human
and chimpanzee immune responses disappear in
chronic infection — while neutralising antibodies
are not found in chronically-infected chimpanzees,
humans with chronic infection have high levels of
neutralising antibodies and the virus acquires neu-
tralisation-escape mutations (162).

The examination of chimpanzee blood and liver
samples, by using microarray technology, has been
used to investigate changes in gene expression
during acute infection and the virus clearance
process. These studies revealed, for example, a
biphasic pattern of viral clearance which involved
different mechanisms fundamental to the cessa-
tion of viral replication to clear viraemia, and that
was followed by the elimination of infected hepato-
cytes (clearance from the liver) (65, 87). This had
been previously deduced, via clinical research and
mathematical-modelling, with experimental
results from HCV-positive patients undergoing
IFN-a-based therapy (163, 164).

Interferons

Microarray-based studies with chimpanzees have
shown that a significant number of genes, the
expression of which is affected during both acute-
resolving and chronic HCV infection, are IFN-
stimulated genes (ISGs), which further implicates
the role of type-I IFNs in the control of HCV infec-
tion (69, 165, 166). Similar conclusions have also
stemmed from human and in vitro studies. For
example, clinical investigations have demon-
strated the critical role of IFN-a in HCV clearance
(44, 45, 167), and in vitro infection studies have
shown that IFN-a inhibits HCV replication in pri-
mary human hepatocytes (168) and in lymphocytic
cell lines (169). Mathematical modelling based on
clinical studies indicated that IFN-a blocked the
production of HCV virion (163), and in vitro inves-
tigations with subgenomic replicons showed that
they, too, are sensitive to IFN-a (170, 171), allow-
ing the detailed in vitro study of HCV replication
and investigation of IFN activity and its effects on
ISGs (172-174).

The analysis of differential gene expression, via
microarray technology and RT-PCR, of human
liver and blood samples from HCV-infected and
uninfected individuals, has confirmed the intimate
involvement of interferons in HCV infection con-
trol. It also identified specific genes with antiviral
activity, along with many other molecular path-
ways involved in the anti-HCV immune response
(175-177), as well as revealing signature genetic
differences in patients who do not respond to IFN
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therapy (178, 179). One investigation on such
patients, that involved the use of chimpanzees,
reported similar results to previous chimpanzee
experiments in terms of the ISGs induced (180),
but the results were also similar to those from clin-
ical and in vitro experiments (181, 182). This situ-
ation not only gives validity to these
non-chimpanzee approaches, but it raises ques-
tions as to why chimpanzees were being used in
the investigation at all, especially as human liver-
biopsy specimens were used alongside the chim-
panzees.

Development of Antivirals and
Vaccines

Basic immunity research to inform vaccine
development

Fundamental to the intelligent and rational devel-
opment of HCV vaccines is the determination of the
exact types of immunity that are effective against
the virus during acute infection, enabling the most
salient immunogens and immune responses to be
targeted. It has been argued that chimpanzees are
uniquely suitable for this purpose because they per-
mit frequent biological sampling during the acute
phase of the disease (90), but there are human-spe-
cific alternative approaches. Acute infection, even
during the very early phase, can be, and has been,
extensively studied in humans, and is exemplified
by studies of patients exposed to contaminated
blood products and the victims of accidental needle-
stick injuries, etc. (see above, e.g. 155). Elegant
prospective studies of acute HCV infection have
been conducted, and these can be achieved, for
example, by the routine screening for the virus in
new admissions to a young offenders institution
(183). This study identified asymptomatic HCV-pos-
itive individuals, whose outcomes and courses of
infection with regard to humoral and cellular
immune responses were monitored. The results
revealed that both types of immune response to
HCV were weak, or even absent, in patients who
exhibited spontaneous viral clearance. The sam-
pling of liver tissue, while invasive and potentially
painful, is also not the preserve of chimpanzee
research. Many HCV investigations have entailed
the use of human liver biopsies, and have resulted
in important discoveries. For example, human liver
biopsies have been involved in the elucidation of the
molecular pathways implicated in HCV core pro-
tein-mediated angiogenesis (184). The role of
microRNAs (miRNAs) in HCV infection and IFN
therapy (185) were similarly investigated by using
human liver tissue. Human liver biopsies were also
useful for identifying differential gene expression in
patients who do, and do not, respond to antiviral

therapy (178), and to uncover IFN-specific genes in
responders that effect antiviral responses, such as
the viperin protein (175). Human liver tissue sam-
ples might also be helpful for the study of disease
progression: gene expression patterns that correlate
with progression to fibrosis can be identified
(186—-192), and disease progression, in patients with
persistently normal alanine transaminase (ALT)
levels, can be assessed (193, 194).

It is therefore evident that immunity to HCV dur-
ing acute infection, and productive research into the
development of HCV vaccines, can be investigated
extensively, even in liver biopsy samples, without
the use of chimpanzees. Indeed, it was often
acknowledged that the lack of robust tissue culture
systems had hampered the identification of poten-
tial antigens with key determinants of neutralisa-
tion, and the development of effective HCV vaccines
(e.g. 195, 196). Further, the in vitro investigative
approaches discussed above have been developed
since the various claims of chimpanzee indispens-
ability in this area were made. These in vitro stud-
ies have positively impacted vaccine development in
many ways, including: the facilitation of viral neu-
tralisation studies to identify neutralising antibod-
ies and relevant epitopes, etc.; the discovery of
factors, cofactors and receptors involved in the
infectious process; and the identification of host
genes that play a role in the infection. Given that
these methods can be used to study HCV infection
from its inception, they also circumvent the need to
take regular liver tissue biopsies from newly
infected chimpanzees. Not only can these studies be
achieved without recourse to chimpanzee use, but
also a move away from the chimpanzee model
toward alternatives offers many advantages. It is
quicker, easier, more humane, and more human-rel-
evant to utilise in vitro methods. The use of these
methods overcomes acknowledged and intractable
problems inherent to chimpanzee use, such as the
restricted number of experiments that can practi-
cally be performed, and the limited inference that
can be made with statistical significance from chim-
panzee data, given the low sample sizes involved
(90), which typically number between two and four
animals (86).

Vaccine testing

The development of an effective HCV vaccine
undoubtedly remains a major challenge. The
immunological correlates of protection are still to
be fully determined, and even were they to be
established any time soon, serious challenges
would remain. For example, multiple HCV geno-
types and circulating quasispecies in infected indi-
viduals require any vaccine to elicit broad
immunological responses, both in terms of cross-
neutralising antibodies to inhibit viral spread, and
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an efficient cellular immune response to clear
infected host-cells. Further, a therapeutic vaccine
must contend with the T-cell failure that is associ-
ated with persistent HCV infection (197).

Thus far, many vaccines of varying types have
been created and tested, with more in the pipeline
— “an exponential growth” in the preclinical test-
ing of HCV vaccines has occurred over the past
three to four years (198). Although there 1s no com-
prehensive and publicly available database of HCV
vaccines, such as the ones that exist for HIV (e.g.
the International AIDS Vaccine Initiative [IAVI]
database [http:/www.iavireport.org/trials-db/Pages/
default.aspx] and the Nonhuman Primate HIV/SIV
Vaccine Trials [NHPVT] database [http://www.
hiv.lanl.gov/content/vaccine/home.html]), some
recent reviews have summarised the vaccine
development attempts made to date (e.g. 52, 58,
197). The strategies have included the use of pep-
tide and recombinant envelope glycoprotein vac-
cines, DNA vaccines, virus-like particles, and
various live viral vectors, such as vaccinia and
adenoviruses. Despite this exponential growth in
preclinical HCV-vaccine testing, Lang and
Weiner (58) and Stoll-Keller et al. (197) cite a
total of only nine different prophylactic vaccines
that have been tested in chimpanzees (58, 197).
The outcomes of trials of these vaccines, when
tested in chimpanzees, are summarised in Table
1. Much of the cited preclinical investigation of
prophylactic vaccines involves the use of mice or
even baboons, and not chimpanzees (52). Of 11
candidate vaccines cited by Houghton and
Abrignani (52), three referred to chimpanzee pre-
clinical data (199, 200, and unpublished data),
while seven referenced mouse data (201-207) and
one referenced baboon data (201). A more recent
report of chimpanzee vaccine tests referenced
almost 30 immunogenicity studies of candidate
HCYV vaccines (208). In addition to those already
cited above, 17 were mouse studies (202,
209-224), two used rats (225, 226), one used pigs
(as well as mice; 221), and just four involved
chimpanzees (77, 200, 227, 228).

The development of therapeutic vaccines has
also received much attention. While Choo et al.
(199) used chimpanzees to test specifically the pro-
phylactic potential of an envelope-protein vaccine
with adjuvant, this vaccine was also tested for
therapeutic potential in human Phase I clinical tri-
als (52) from 2003—2005 (ClinicalTrials.gov identi-
fier NCT00500747) — no clinical follow-up is as yet
apparent. In 2005, chimpanzees were cited in two
therapeutic vaccine trials either “in progress”, via
personal communication, or as “unpublished data”
(52), involving adenovirus/DNA prime—boost and
adjuvanted HCV polyprotein vaccines, respec-
tively. Other cited preclinical therapeutic vaccine
trials involved not chimpanzees, but rhesus
macaques (229) and mice (230).

Otherwise, the reviews have focused on human
trials of vaccines examining therapeutic efficacy (58,
197). These include: clinical reports of humoral and
cellular immune responses following a recombinant
E1 envelope protein vaccination (‘InnoVac-C’; 231,
232); and inoculation with the multi-peptide ‘IC-41’
vaccine (233—-235), and ‘personalised peptide’ vacci-
nation (236), both of which decreased viral RNA in
only a small proportion of the patients; and Phase
I/II clinical trials of the DNA-based non-structural
protein 3 (NS3) vaccine, ‘ChronVac-C’, the vaccine
based on heat-killed recombinant yeast expressing
NS3-Core fusion protein, ‘GI-5005’, and the recombi-
nant vaccine based on modified vaccinia virus
Ankara (MVA) expressing HCV non-structural pro-
teins (ClinicalTrials.gov, 198, 237).

A major objective of therapeutic vaccine develop-
ment is to induce and augment innate immune
responses, such as the production of IFNs and the
activity of natural killer (NK) cells, both of which
are specifically down-regulated by HCV during
infection. In vitro research has informed this area
significantly. For example, the HCV NS3/4A pro-
tease is known to disrupt host signalling-pathways
that induce IFN-B, among other antiviral host-
defence genes such as IFN regulatory factor 3
(IRF-3) and NF-«B, via the retinoic acid-inducible
gene I (RIG-I; 238) and the Toll-like receptor 3
adaptor protein (TRIF; 239). Inhibitors of HCV
NS3/4A can therefore restore these host defence
mechanisms (240). In addition, NK cells were
shown to be inhibited by HCV binding — specifi-
cally, engagement of the viral E2 protein with the
CD81 receptor on the NK cells blocks NK cell acti-
vation and proliferation, as well as cytokine pro-
duction and cytotoxic granule release (241), and
NK cell-directed IFN-y production (242).

With regard to all of the above chimpanzee data, it
is difficult to interpret the results to infer significant
relevance for the efficacy of any future human vac-
cine. The data are highly variable, which might be
expected due to natural biological variability
between individual chimpanzees. However, more
importantly, it is acknowledged that the innate high
rate of resolution of HCV infection in chimpanzees
(compared to humans) poses a problem — “Given
that many chimpanzees spontaneously resolve acute
hepatitis C, definite conclusions await human stud-
ies” (77, 197). Further, optimism at many of the
ostensibly encouraging results must be tempered by
the fact that “protection against chronic infection fol-
lowing challenge with a heterologous strain was lim-
ited” (197). With regard to DNA vaccines, it has been
conceded that “DNA based immunisation results
obtained in one animal species cannot be extrapo-
lated to other species, and this is especially relevant
for HCV” (243). In 2008, Youn et al. reported that, of
the vaccines tested in chimpanzees to date (208), all
except one have failed to prevent chronic infection
completely (196).
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Table 1: Hepatitis C vaccines tested in chimpanzees

Vaccine type Vaccine details

Trial outcome (immune response/protection) Refs

Recombinant envelope  No adjuvants

glycoprotein

Humoral and cellular responses did not prevent infection, 78
but delayed viraemia in two chimpanzees

Recombinant envelope = With adjuvants

glycoprotein

Strong humoral response provided five chimpanzees with 199
protection from rechallenge with homologous HCV. Two

chimpanzees remained unprotected. Pooled results: 62% of
unvaccinated chimpanzees infected on rechallenge; 17% of
vaccinated chimpanzees infected upon homologous HCV
rechallenge; and 11% of vaccinated chimpanzees infected
upon heterologous HCV rechallenge

DNA Encoding E2
envelope

glycoprotein

Humoral and cellular responses in two chimpanzees. Both 291
individuals were infected upon homologous rechallenge, but
the infections resolved

VLPs

proteins

Core and envelope Strong humoral and cellular responses in four chimpanzees, 196
similar to previous tests in mice and baboons. Animals

were infected upon rechallenge, though viraemia was

controlled

Recombinant vaccinia
virus

Encoding several
HCV proteins

HCV infection cleared after homologous rechallenge in four 208
chimpanzees

DNA prime/protein Multi-component

boost

One chimpanzee resolved infection. Another individual fell 200
ill, but infection was controlled after rechallenge with

heterologous HCV

DNA prime/adenoviral -

One chimpanzee showed sterilising immunity and one 228

boost individual resolved infection. Four became persistently
infected
DNA prime/modified - Humoral and cellular responses. Control of viral load upon 227
vaccinia Ankara (MVA) homologous rechallenge, but three of four chimpanzees
boost became chronically infected

Adenoviral prime/DNA -
boost

Strong cellular response. Four of five chimpanzees resolved 77
infection when challenged with heterologous HCV

DNA Non-structural

(NS3-NS5B)

Vigorous cellular response comparable to five humans who
had spontaneously cleared acute HCV infection 330

HVC = hepatitis C virus; VLPs = virus-like particles.

In contrast to the confounding nature of the chim-
panzee data exemplified here, clinical and in vitro
data have precipitated significant progress in vac-
cine development (23, 197). To illustrate, longitudi-
nal studies of two cohorts of acutely-infected
patients involving HCV pseudoparticles (HCVpp)
have confirmed a correlation between the rapid or
delayed induction of high-titre neutralising antibod-
ies, and viral clearance or chronic infection, respec-
tively (244, 245). Further in vitro and clinical
investigations have shown that these antibodies are
not responsible for the control of HCV infection, with
the mutation and evolution of the HCV envelope pro-

teins outpacing the neutralising antibody response
(162). Studies utilising HCVpp and cell culture-
derived HCV (HCVcc) showed that neutralising
antibodies target HCV entry events post-binding,
via a specific epitope in the HCV E1 envelope glyco-
protein, and the CD81 and Scavenger Receptor Bl
(SR-B1) host receptors (246).

Development and testing of antiviral agents

The currently available therapy for HCV — PEG-
IFN/ribavirin — is effective in only around half of
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patients, is genotype-specific, is highly toxic, and is
expensive (prohibitively so, in many instances).
The urgent need for new antivirals is clear, and in
vitro research has greatly contributed to this area
of investigation. The molecular characterisation of
the HCV genome and proteome permitted the pre-
cise definition of targets for antiviral agents and
the structure-based rational design of HCV
enzyme inhibitors (83, 247). The use of HCV repli-
cons, cell culture and other associated methods of
investigating the HCV life cycle in vitro (172, 248)
were breakthroughs described as “revolutionary”
(198), as they enabled the design, development,
screening and testing of specific anti-HCV antivi-
rals known as ‘specifically-targeted antiviral ther-
apies for hepatitis C' (STAT-Cs). Due to their
specificity, most, if not all, of these agents should
be more tolerable and should possess greater and
more robust anti-HCV activities than the current
standard IFN/ribavirin treatment (198). As a
result of in vitro methods, numerous STAT-Cs
have been and are currently being tested, and
many more are in the course of development —
directly targeting, for example, viral entry, trans-
lation, and assembly, but also working indirectly
via modulation of the immune response, etc.
Up-to-date and comprehensive summaries of
these therapies are available, which detail numer-
ous and varied agents (e.g. 50, 198, 249), not all of
which can be, or need to be, extensively described
here. With regard to assessing the necessity of
chimpanzee use and the impact of alternative
methods on the development of HCV antivirals,
however, a number of examples are informative:

— Entry inhibitors: Civacir (human HCV anti-
body-enriched immune globulin) and HCV-
AB68 (human monoclonal anti-E2 antibody)
have been clinically evaluated in liver trans-
plant recipients, though both exhibited little or
no suppression of HCV RNA levels (250, 251).
Civacir had previously been shown to neutralise
infectious inoculates, and prevent or delay
infection, in chimpanzees (252, 253).

— Translation inhibitors: Several have been tested,
including the antisense oligonucleotides
ISIS14803 and AVI-4065, for which a clinical
trial was terminated due to lack of antiviral
activity or elevated plasma ALT (254). Other
options considered include ribozymes that target
and cleave the HCV internal ribosome entry site
(IRES) region, such as Heptazyme, which showed
efficacy in human trials, but its use was termi-
nated due to animal toxicity (255), and IRES
inhibitors such as VGX-410C (Mifepristone),
which was not efficacious in clinical trials (256).

— Assembly inhibitors: An HCV-assembly inhibitor
that operates via alteration of envelope-protein

glycosylation, Celgosivir (MX-3253), is currently
in Phase II clinical trials (257).

— Viral-polymerase inhibitors: These are another
important class of antiviral agents, and com-
prise nucleoside, non-nucleoside and pyrophos-
phate mimics, and other classes of agents (258).
Non-nucleoside inhibitors have been tested in
vitro by using the replicon system, and in bio-
chemical assays by using purified viral poly-
merase (259, 260), with positive results. The
benzothiadiazine, A-837093, for example,
exhibited potency and specificity in vitro, and
reduced la-genotype and lb-genotype viral load
in chimpanzees, although resistance quickly
developed and rebound occurred (261). The
nucleoside analogue, MK-0608, was efficacious
in vitro, and showed favourable pharmacokinet-
ics in rats, dogs and rhesus macaques. It was
subsequently tested in chimpanzees, where it
reduced viral load significantly, though
rebound occurred after the cessation of dosing
(94). Valopicitabine (NM283; Idenix) exhibited
efficacy in clinical trials, but was associated
with severe gastrointestinal adverse reactions
and antagonistic drug—drug interactions that
caused its development to be suspended (262,
263). The inhibitors, R1626 and R7128, have
shown encouraging human efficacy, especially
in combination with PEG-IFN/ribavirin (262),
though the development of R1626 was termi-
nated at the end of 2008, due to adverse events
and limited sustained efficacy (198, 264); R7128
remains in clinical trials (198). IDX184 is being
evaluated in clinical trials, after exhibiting syn-
ergistic antiviral effects with PEG-IFN/rib-
avirin, as well as efficacy in chimpanzees
(198). The polymerase inhibitors, VCH916,
R0O5024048, ABT-333 and A-831, are in Phase
II clinical trials (237).

— Protease inhibitors: These are a major focus of
STAT-C development, given that the HCV life
cycle crucially involves the proteolytic cleavage
of a polyprotein into functional constituent
HCV viral proteins. The main targets for these
inhibitors have been the HCV NS3/4A serine
protease and the NS5B viral polymerase (54).
The NS3/4A protease performs vital functions,
cleaving the HCV polyprotein at four sites, inac-
tivating host proteins involved in the IFN-
mediated host antiviral response, and acting as
a cofactor for the viral polymerase and for an
RNA helicase, among others (262). The viral
polymerase, which performs an indispensable
function and bears only a slight homology to
host polymerases, is a clear target. The devel-
opment of inhibitors that are specific for these
enzymes was made possible by the determina-
tion of their three-dimensional structures,
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which enabled the rational design of inhibitory
molecules (e.g. 50, 265, 266). For example, the
serine protease inhibitors, telaprevir (also
known as TVR and VX-950) and boceprevir
(SCH503034), were discovered via structure-
based drug-design techniques (267) and
resulted in the elimination of HCV RNA in
subgenomic replicon studies (268, 269), eventu-
ally leading to current Phase III clinical trials
(264). Telaprevir and boceprevir are at the most
advanced stage of development (262), and are
expected to be approved for use in 2011 (270).
Notably, in vitro resistance studies involving
the use of subgenomic replicons have been of
crucial importance in determining the likeli-
hood of the development of HCV strains which
are resistant to these drugs, and in comparing
different antiviral therapies to assess the poten-
tial efficacies of their combination (271). There
are no published reports that these therapies
have been tested in chimpanzees. Ciluprevir
(BILN 2061) was effective against HCV repli-
cons in vitro, and in clinical trials (240, 272),
though the clinical trials were halted when car-
diac toxicity was reported in chimpanzees (50),
and also in monkeys (262). TMC435350 has
shown efficacy in patients, and is currently in
Phase II trials, as are ITMN-191 and MK-7009
(42, 198, 237).

— Other agents: Other agents in clinical trials
include an inhibitor of cyclophilin B (an impor-
tant co-factor for the HCV polymerase; 273),
Debio 025 (274), which showed significant antivi-
ral activity in subgenomic replicon systems, as
well as in full-length infectious HCV systems
(275, 276), and 1s currently in Phase I and II clin-
ical trials (274, 275). The thiazolide-signalling
modulator, Nitazoxanide, was serendipitously
found to harbour anti-HCV properties during its
use for its intended purpose as a treatment for
intestinal parasites (277), and it may therefore
prove to be useful in the treatment of HCV infec-
tions. Further agents undergoing trials include
modified IFNs with greater efficacy and reduced
adverse effects, such as Albuferon, Locteron and
Omega-IFN (278, 279), a number of Toll-like
receptor (TLR) agonists that have exhibited mod-
erate antiviral activity (280, 281), and ribavirin
analogues, such as Viramidine (taribavirin),
which causes fewer anaemic adverse reactions,
but is less effective (282). Sakamoto and
Watanabe (237) list almost 20 other agents,
including IFN formulations, immune modulators
and host-targeted agents and anti-steatosis
drugs, which are in current clinical trials (237).
Many of these agents are reviewed in detail in
other contemporary reports, which are replete
with in vitro, in silico, molecular and ex vivo ref-
erences, and almost devoid (f not entirely devoid)

of references to chimpanzee studies (see, for
example, 42, 283, 284).

In common with establishing the scale of animal
use in preclinical testing generally, it is difficult to
assess the degree of chimpanzee use in the preclin-
ical development of HCV antiviral agents. While
Internet searches suggest that only a small pro-
portion of agents have been tested in chimpanzees,
a smaller proportion still are reported in the peer-
reviewed scientific literature. Of greater than 60
HCV antiviral agents, identified via a cursory scan
of review articles and via Internet searches, just
eight were readily identifiable as being associated
with chimpanzee testing. For example, chim-
panzees were involved in preclinical studies of
Viramidine/taribavirin (a modified form of rib-
avirin), and, along with rodent experiments, they
provided pharmacological and toxicological data
(285). Antiviral activity was found in chimpanzees
for the nucleoside analogue, valopicitabine (NM-
283), as well as in an HCV replicon system (286),
and Phase III clinical trials are ongoing. The poly-
merase inhibitor, A-848837 (Abbott), was tested
for its pharmacokinetic (PK) properties in chim-
panzees, following efficacy studies in vitro (261,
287). The polymerase inhibitors, ANA 598 (288),
IDX102 and IDX184 (289), and Merck’s S282T
(290, 291) and MK-0608, all demonstrated antivi-
ral efficacy in chimpanzees (292), as did Merck’s
protease inhibitor, R155K (290, 291). In late 2009,
it was reported that Santaris Pharma’s SPC3649
exhibited efficacy in chimpanzees by interacting
with miRNA-122, thus affecting HCV replication
(293, 294).

Mention of chimpanzee use is also notably
absent in reviews detailing drugs whose develop-
ment has been discontinued, suggesting a lack of
importance and utility of the chimpanzee model in
the development of drugs for the treatment of hep-
atitis C. For example, reviews of discontinued anti-
infective drugs published in the last three years
(2008-2010, inclusive), list a total of 14 anti-HCV
drugs (including two vaccines), many of which
were in clinical trials, that were discontinued from
2006—-2008 inclusive (295-297), for reasons of toxi-
city, poor absorption, and insufficient efficacy.
Chimpanzee data and/or testing are not cited for
any of these drugs, nor was any other published
evidence of chimpanzee use able to be located.

Overall, it is clear that chimpanzees are used
only infrequently in the development of HCV
antiviral drugs, and it follows that the latter can-
not be dependent on the former. In fact, the litera-
ture reveals that current regulatory requirements
for preclinical PK and toxicological data from two
animal species have been fulfilled in the majority
of cases — as is the case for HCV vaccine develop-
ment — without recourse to chimpanzee use. For
example, prior to arguably superfluous experi-
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ments in chimpanzees, the nucleoside analogue,
MK-0608, exhibited efficacy in vitro, and its phar-
macokinetics were determined in rats, dogs and
rhesus macaques (94). The nucleoside inhibitor,
B102, and the Heptazyme HCV-translation
inhibitor were similarly tested in rats and mon-
keys (255, 298-300). A number of modified murine
models have also been developed and have been
widely utilised (91), such as the uPA-SCID mouse
model, in which human hepatocytes are trans-
planted into immunodeficient mice, to provide a
chimaeric liver that can be infected with HCV
(301-303). These mice have been used, for exam-
ple, to test the cyclophilin inhibitor, Debio 025
(275).

Where chimpanzee experiments have been per-
formed, in addition to those in other species, it can
be argued that they were redundant. This can be
illustrated for the recently reported miRNA drug,
SPC3649. The role of the target molecule of the
drug, miRNA-122, in HCV replication was
described four years previously, via tissue culture
experiments with human liver cells (304).
Subsequent in vitro experiments demonstrated the
therapeutic potential of other agents, very similar
to SPC3649, in decreasing the level of HCV during
infection (305). Clinical trials of the drug had
begun 18 months prior to the chimpanzee reports,
and clearly before the chimpanzee experiments
had commenced. Single-dose Phase I trials were
completed in 2009, for which the results are immi-
nent (306), and another multi-dose Phase I human
trial is in progress and is due to finish in 2010
(307). Furthermore, the testing of SPC3649 had
already complied with regulatory toxicology
requirements, having been tested in African green
monkeys (308), as well as in mice (309). Therefore,
from a Three Rs and regulatory perspective, there
is more than ample scope for the in vivo testing of
HCV antivirals by using species other than chim-
panzees. However, from a scientific perspective,
there is evidence that all non-human species, not
just chimpanzees, are superfluous to requirements
for establishing the efficacy and pharmacokinetics
of new antiviral drugs for the treatment of hepati-
tis C in humans (see the companion paper [17]).

Scientific, Ethical and Practical
Problems With the Use of
Chimpanzees in HCV Research

In addition to the arguments presented above,
there are further fundamental scientific argu-
ments for the lack of human relevance and redun-
dancy of the chimpanzee model in HCV research.
Important practical and ethical matters also sup-
port a move away from chimpanzee use, toward
the widespread adoption of superior alternatives.
For instance, there are major and fundamental

disparities between HCV infection and disease in
humans and chimpanzees. Recently, striking dif-
ferences in gene expression have begun to emerge;
for example, treatment of HCV infection with IFN
in humans leads to a decrease in expression of the
SOCS3 (Suppression Of Cytokine Signalling) gene,
which is involved in the regulation of IFN-sig-
nalling pathways. In chimpanzees, by contrast,
IFN treatment increases SOCS3 expression, pre-
venting the activation of ISGs and ‘blunting’ the
IFN response (180). It therefore appears that,
despite some similarities between HCV infections
in humans and chimpanzees, profound differences
exist, which indicate significantly different patho-
logical processes and immune responses (94). In
some respects, it could be argued that chimpanzees
suffer a different disease altogether (59). This is
supported, for example, by the fact that the JFH-1
strain of HCV 1is “not particularly infectious” in
chimpanzees (310), yet it was isolated from a
patient with fulminant hepatitis C (311). Further
evidence that HCV infections in the two species
display critical differences comes from the failure
of the chimpanzee model to positively impact vac-
cine development and the understanding of hepa-
tocellular damage (312), and it suggests that the
majority of the progress has emanated from in
vitro and clinical studies (313).

Practically, there is the basic issue of chimpanzee
availability and cost. Chimpanzee use is expensive,
so chimpanzee-based projects reduce the funds
available for other avenues of research. The avail-
ability of chimpanzees (particularly naive individu-
als) is also severely limited, which restricts the
number of investigations that can be conducted (32,
77, 243). Breeding for new availability would further
contribute to the current so-called ‘surplus’ of chim-
panzees, and to the enormous costs of lifetime care of
federally supported chimpanzees in US laboratories.
These costs alone, for the chimpanzees that are
already supported by the US National Institutes of
Health, have been estimated at $312 million. This
figure compares to an estimated $139 million for
superior care in sanctuary (T. Capaldo & M. Owens
[2010], submitted for publication). Further, most
studies involve just two to four animals, meaning
that the statistical significance of the data is highly
questionable, and apparent differences can often be
due to inherent biological variation (86) — a factor
that cannot be addressed due to the lack of avail-
ability and the expense of acquiring more individu-
als. Rather, there is ample evidence that HCV drug
leads progress solely on the basis of in vitro efficacy
models (314).

Obvious and widely documented ethical aspects
are often cited (e.g. 32, 91), which are considered in
more detail in the Discussion section, below. To
illustrate the capacity of chimpanzees, both in and
from research, to suffer greatly, studies have
revealed the existence of post-traumatic stress dis-
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order in ex-research chimpanzees now in sanctuar-
ies (2). These studies have detailed physical and
psychological traumas suffered by chimpanzees
that were raised in various human/chimpanzee
contexts and then used in research. They have also
reported on the compromised ability of the chim-
panzees to recover from such trauma, once in a
sanctuary (3). From a pragmatic perspective, it
must be appreciated that, worldwide, chimpanzees
may only be used in research in the USA. The last
facility in Europe closed in 2004, following a deci-
sion by the Dutch government that chimpanzee
research was of “limited importance” and that the
chimpanzee was an “unsuitable model” (9, 10). In
the USA, a similar implication emanated from the
National Center for Research Resources (NCRR), a
centre within the National Institutes of Health,
which made a ten-year breeding moratorium for
NCRR-owned chimpanzees permanent in 2007
(315). The apparent lack of value of chimpanzee
research, as viewed by these institutions, is
reflected in public opinion — for every US citizen
who opposes a ban on chimpanzee research, almost
two individuals support the ban (11).

Other Animal Models

While this report focuses on evaluating the need
for chimpanzees in HCV research, and the in vitro
and clinical alternatives to chimpanzee use, it is
important to highlight the existence of other ani-
mal models for HCV studies. While the position of
this review (based on the data it presents) is that
the needs of HCV research and drug development
can be met without recourse to any in vivo model,
it must be accepted that some scientists believe
that an animal model for HCV research is useful,
and that current regulatory requirements look
toward animal data when approving new drug
applications.

A number of in vivo alternatives to chimpanzees
are already in use. There are rodent models bear-
ing human hepatocytes (reviewed in 316), which
include immunocompetent fetal rats (317), immun-
odeficient trimera mice (318, 319), uPA mice (302,
303, 320), and several other transgenic mice (e.g.
316, 321). It is claimed that these models allow the
evaluation of the efficacy of new HCV antiviral
drugs and monoclonal antibodies, and the investi-
gation of the expression of HCV genes upon liver
injury (91). New World monkeys infected with GB
virus-B (GBV-B), which is related to HCV, are also
being used (91), including tamarins (genus
Saguinus), the common marmoset (Callithrix jac-
chus) and the owl monkey (Aotus trivirgatus).
These monkeys develop subacute self-resolving
hepatitis following GBV-B infection (322, 323) —
chronicity, as for HCV-infected chimpanzees, is
relatively uncommon. Chronicity must be induced

in GBV-B infected monkeys via immunosuppres-
sion, or by the use of an engineered virus (324,
325). Various species of tree shrew (genus Tupaia)
have been infected with HCV under severe
immunosuppression (326), though persistent infec-
tion was not possible.

Discussion and Conclusions

The GAPA is a current bill in the US House of
Representatives and in the Senate which seeks to
end invasive biomedical research and testing on
the estimated 500 federally-owned chimpanzees
remaining in US laboratories, and to retire them
to sanctuaries. The foundations of the bill are
that chimpanzee research is ethically unaccept-
able and scientifically unjustifiable, assertions
that have been augmented by comprehensive,
insightful and robust peer-reviewed publications
in recent years. While these papers have
addressed concerns and claims regarding the
impact of invasive research on captive chim-
panzees, and of the efficacy and human relevance
of chimpanzee research generally, as well as
specifically in AIDS and cancer research, the
question of hepatitis C had not been substantially
addressed. Further, there are concerns that
almost four decades of HCV research have had lit-
tle tangible impact: the incidence of hepatitis C
continues to increase markedly, there is no vac-
cine yet available, and there is only one non-spe-
cific and partly-efficacious treatment. This review
of chimpanzee-based research is timely, as it pro-
vides important information concerning the scien-
tific ramifications of the potential passage of the
GAPA for research into hepatitis C, and collates
prominent examples of all aspects of HCV
research to inform debate and deliberation over
the best future path for HCV investigation. These
issues are of serious ethical concern, not just for
chimpanzees in US laboratories, but also for
human beings who are relying on science to pro-
vide treatments and cures for this grave disease.

In considering the current and future need for
chimpanzees in HCV research, the salient issue
had to be a deliberation of what alternative scien-
tific techniques and research methods, currently
and in the near future, could deliver equal or bet-
ter results. Could chimpanzee experimentation
add any data of gravity that could not be obtained
by using other approaches? If chimpanzee use
could inform specific areas not investigable by
other means, how likely is this data to be crucial or
redundant, and is its speculative importance miti-
gated by the ethical and financial costs of obtain-
ing it? If chimpanzee use is not necessary, given
the alternative investigative methods available
(see companion article [17]), then chimpanzee
experimentation is redundant and cannot be justi-
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fied. However, it is informative to consider the past
use of chimpanzees in HCV research to help esti-
mate the relevance of chimpanzee data, and there-
fore to assess the likelihood that any future
chimpanzee experiments will be truly germane to
knowledge concerning human HCV infection.
Therefore, this was a significant part of this
review.

A major reason offered for the use of chim-
panzees was the absence of any other option.
Simply put, chimpanzees were used because nei-
ther another animal model, nor a full in vitro cul-
ture system, was available until recently. The
desire for an alternative animal model may have
been due to any combination of the following: the
ethical and financial costs of relying on chim-
panzees; scientific reasons for the lack of relevance
of the chimpanzee model to human HCV infection;
and practical considerations. Many researchers
have readily highlighted serious caveats in chim-
panzee use, and many have stressed the urgent
need for in vitro viral culture systems, to acceler-
ate discovery and to lead to true translational
research and clinical benefit, as had occurred for
other human viral diseases, such as polio and
measles.

Nevertheless, claims of the critical nature of
chimpanzee use in historic HCV research are wide-
spread, and many claims regarding the future
importance of the chimpanzee in HCV research
continue to be made. These assertions, however,
have been subject to little or no critical and
detailed analysis. The mere involvement of chim-
panzees in research is not sufficient justification
for their use. In any valid argument for their
necessity, it must be asked whether, and demon-
strated how, the use of chimpanzees did indeed
provide unique and reliable data.

Therefore, this review revisited and scrutinised
various claims of chimpanzee necessity in HCV
research, and found, in most cases, that such
claims were exaggerated and overstated — and, in
the case of future chimpanzee need, incorrect and
unjustifiable.

While HCV research has constituted the main
area of chimpanzee experimentation for some time,
chimpanzees have actually been used in only a rel-
atively small number of research projects. This 1s
true from the early days of HCV research — when
the disease and the virus were being discovered
and characterised through analyses of immune
responses, and the factors influencing viral clear-
ance and progression to chronicity — right through
to the determination of mechanisms of antiviral
therapy and new therapeutic targets, and then
through to the ongoing design, screening develop-
ment and testing of antivirals and vaccines. This
review illustrates that any argument for their
essential involvement is highly contentious, if not
erroneous. Historically, many instances of chim-

panzee use produced data that had been similarly
and contemporarily provided by non-chimpanzee
(indeed non-animal) means, rendering those chim-
panzee studies entirely redundant, as well as cases
where the chimpanzee data confounded or con-
flicted with human studies.

Of all the claims of chimpanzee experimentation
necessity, the assertion that chimpanzees were
vital for the identification of the HCV itself (at a
time when many of the molecular methods avail-
able now were not able to circumvent the problems
involved) has the most substance. However, in ret-
rospect, it seems that chimpanzees were perhaps
not required to characterise the high-titre human
serum samples used in the process. The only other
substantial argument was for the use of chim-
panzees in determining the infectivity of HCV
clones. This appears to have been for reasons of
practicability (chimpanzees were already being
used for infectivity studies with other viruses and
were readily available), and the appropriate alter-
native methods available at the time had been too
readily dismissed. Further, the development of in
vivo infectious clones did not constitute a key step
in the development of the sought-after in vitro
replicon, VLP, HCVpp and HCVcc systems in any
case, as described in the companion article (17).
Even if it were the case that chimpanzees had been
crucial in these instances, these discoveries took
place relatively long ago and have no bearing on
the suitability and necessity of chimpanzees for
HCV research now and in the future. It must
therefore be concluded that the impact of chim-
panzee experimentation on HCV research is rela-
tively negligible compared to non-chimpanzee
methods, certainly during its recent history, which
adds weight to the conviction that HCV research
would not suffer if chimpanzee experiments were
ended.

When considered alongside the major caveats of
the chimpanzee model, including their expense,
their lack of availability and practicability, and
the notable significant biological differences
between HCV infection and pathology in chim-
panzees and in humans, the use of the chimpanzee
model in HCV research holds little or no current
value. Serious ethical issues must also be consid-
ered, especially in light of the US Animal Welfare
Act requirements for the psychological wellbeing
of primates (327), of US public opinion, and of
overwhelming support for not employing chim-
panzees in harmful research when alternatives
are available (328). Ethical concerns include life-
long behavioural disorders, physical and psycho-
logical problems, such as post-traumatic stress
disorder resulting from the consequences of long-
term captivity, anaesthetic-dart knockdowns, and
subjection to multiple invasive procedures. The
proposed merits of chimpanzee use are called into
further question when one considers other
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avenues and options currently at our disposal, and
the comprehensive data they can, and do, deliver.
Many of the myriad in viiro methods of inquiry,
including a significant number at the cutting edge
of technology, have been detailed in the compan-
ion report (17).

In summary, there is a very strong argument
against any scientific requirement for the use of
chimpanzees in hepatitis C research. Given recent
opinions that the chimpanzee is a poor model in
other areas, such as HIV/AIDS and cancer
research, and more generally as a model organism,
this is not an unexpected conclusion. Chimpanzee
HCV research cannot be considered a necessity,
and indeed, prohibiting it would accelerate
progress against hepatitis C by releasing funds
currently appropriated to expensive chimpanzee
projects, enabling those funds to support more-pro-
ductive methods. The ‘hepatitis C necessity argu-
ment’ should therefore not dissuade changes in
public policy with regard to the confinement and
use of chimpanzees in US laboratories, as it has lit-
tle or no foundation, but it should support changes
in funding priorities. Continuing unsubstantiated
claims of the necessity of chimpanzees in HCV
research, such as those that this paper attempts to
address, are adversely affecting humans, chim-
panzees and scientific progress. The in-depth
investigation of these claims, by using the actual
data from, and statistics of, chimpanzee hepatitis
C studies, suggests an ethical and scientific move-
ment away from captive and invasive chimpanzee
experimentation. Therefore, it lends scientific sup-
port to efforts such as the GAPA, and an end to the
USA remaining the only country in the world that
currently uses chimpanzees in research to any sig-
nificant degree. This investigation adds further
explanation as to why many scientifically
advanced countries have banned or severely lim-
ited chimpanzee use. For the hundreds of millions
of human beings infected by HCV, or at risk of
being infected, as well as for the approximate 1,000
chimpanzees in US laboratories, the results of this
study, and of the associated investigation (Paper 2
[17]), clearly support the replacement of chim-
panzees in HCV research with superior alterna-
tives.
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